Worksheet 2.

In this worksheet, we will explore simplifying functions and algebraic expressions. We mainly focus on factoring and expanding algebraic expressions.

Examples: $\quad f(x)=x^{2}-4, \quad f(t)=t^{3}-3 t^{2}-4 t, \quad f(x)=x^{3}-2 x^{2}-x+2$

Factoring Algebraic Expressions

Factoring allows us to rewrite a given complex expression as a product of its factors. When factoring polynomials, the following identities are frequently used:

- Factoring a quadratic function.
- $a^{2}-b^{2}=(a-b)(a+b) \quad$ difference between squares.
- $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \quad$ difference between cubes.
- $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \quad$ sum between cubes.
- Factor by grouping terms.

Follow these steps when factoring:

- First, factor out any common factors. That is, if there is a common term between all the terms, factor it out, even if it's a number.
- Use any of the identities you know to factor the remaining expression.
- Continue till you can't factor any further.

Examples:

1. $f(x)=3 x^{3}-9 x^{2}-30 x \quad$ First, factor out the common factor, $3 x$

$$
=3 x\left(x^{2}-3 x-10\right)
$$

Next, factor the quadratic expression into a product of two linear factors. Here we are looking for two numbers that multiply to -10 and add up to -3 .

$$
f(x)=3 x(x-5)(x+2)
$$

2. $f(x)=x^{3}-2 x^{2}-x+2$
$=x^{2}(x-2)-(x-2)$
$=(x-2)\left(x^{2}-1\right)$

$$
=(x-2)(x-1)(x+1)
$$

Group the terms and takeout common factors.
Factor out the common factor, $(x-2)$.
Factor out $x^{2}-1$ using the formula $a^{2}-b^{2}=(a-b)(a+b)$.

Rewrite 4 as 2^{2} and then rearrange the terms in the form of $a^{2}-b^{2}$

$$
\begin{aligned}
& =\left(t^{2}\right)^{2}-2^{2} \\
& =\left(t^{2}-2\right)\left(t^{2}+2\right)
\end{aligned}
$$

$$
\text { Use the formula } a^{2}-b^{2}=(a-b)(a+b)
$$

Note that $t^{2}+2$ is an irreducible quadratic factor, but we can factor $t^{2}-2$ into a product of two linear factors using the formula $a^{2}-b^{2}=(a-b)(a+b)$ again.
$f(t)=\left(t^{2}-(\sqrt{2})^{2}\right)\left(t^{2}+2\right)$ $=(t-\sqrt{2})(t+\sqrt{2})\left(t^{2}+2\right)$

Try these:

$\overline{\text { Factor as much as possible. }}$

1. $f(x)=8 x^{5}+36 x^{4}-20 x^{3}$
2. $f(t)=2 t^{4}-5 t^{2}-3$
3. $g(x)=9 x^{3}-25 x$
4. $h(x)=2 x^{3}-3 x^{2}-4 x+6$

Extra Practice:

1. $f(x)=15 x^{2}+25 x+10$
2. $f(t)=t^{6}-27 t^{2}$
3. $g(x)=x^{5}+3 x^{3}-8 x-24$

Expanding Algebraic Expressions

When expanding polynomials, the following identities are frequently used:

- $(a+b)^{2}=(a+b)(a+b)=a^{2}+2 a b+b^{2}$
perfect square binomial.
- $(a-b)^{2}=(a-b)(a-b)=a^{2}-2 a b+b^{2} \quad$ perfect square binomial.
- $(a+b)^{3}=(a+b)(a+b)^{2}=(a+b)\left(a^{2}+2 a b+b^{2}\right)=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
- $(a-b)^{3}=(a-b)(a-b)^{2}=(a-b)\left(a^{2}-2 a b+b^{2}\right)=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$

Examples:

1. Simplify the expression $(x-3)^{2}-5(x-3)-\left(x^{2}-5 x\right)$.

We can use the perfect square binomial expansion, $(a-b)^{2}=a^{2}-2 a b+b^{2}$

$$
\begin{aligned}
(x-3)^{2}-5(x-3)-\left(x^{2}-5 x\right) & =\left(x^{2}-6 x+9\right)-5(x-3)-\left(x^{2}-5 x\right) \\
& =x^{2}-6 x+9-5 x+15-x^{2}+5 x \\
& =-6 x+24
\end{aligned}
$$

2. If $g(x)=x^{3}-4 x+3$, then simplify $g(x+2)-g(x)$.

$$
g(x+2)-g(x)=\left[(x+2)^{3}-4(x+2)+3\right]-\left[x^{3}-4 x+3\right]
$$

$$
\text { We can use }(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \text { with } a=x \text { and } b=2 \text {. }
$$

$$
\begin{aligned}
g(x+2)-g(x) & =\left[(x+2)^{3}-4(x+2)+3\right]-\left[x^{3}-4 x+3\right] \\
& =\left[\left(x^{3}+6 x^{2}+12 x+8\right)-4(x+2)+3\right]-\left[x^{3}-4 x+3\right] \\
& =x^{3}+6 x^{2}+12 x+8-4 x-8+3-x^{3}+4 x-3 \\
& =6 x^{2}+12 x \quad \text { We can factor out the common factor } 6 x . \\
& =6 x(x+2) \quad
\end{aligned}
$$

Try these:

1. If $f(x)=2+5 x-3 x^{2}$, then simplify $f(x+3)-f(x)$.
2. Simplify the expression $(x-1)^{3}+4(x-1)-\left(x^{3}+4 x\right)$.
3. If $f(t)=7-2 t^{3}$, then simplify $f(a+h)-f(a)$.

Extra Practice:

1. If $f(t)=8 t-4 t^{3}$, then simplify $f(-2+h)-f(-2)$.
2. If $f(x)=x^{2}-2 x+1$, then simplify $f(x+5)-f(x)$.
